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We propose a phenomenological equation of motion for the nonlinear 0 model undergoing defect
coarsening at low temperatures, in which the thermal fluctuation degrees of freedom (spin waves)
are explicitly separated from the defect degrees of freedom. The Gaussian closure approximation
is used to find the zero temperature order parameter correlation function. The main result of this
paper is the calculation of the spin wave correlation function, which is the O(T') correction to the
order parameter correlation function. The spin wave correlation function shows the scaling behavior
predicted by Bray [Phys. Rev. Lett. 62, 2841 (1989)] for N > 2, and is exact in the ¢ — oo and
N — oo limits. Our results for the XY model in two dimensions clarify the nature of coarsening

observed at the lower critical dimension.
PACS number(s): 64.60.Cn

I. INTRODUCTION

There has been a great deal of progress recently in the
theory of defect coarsening at first order phase transi-
tions [1-5]. These systems typically evolve into a scaling
regime, in which all statistical properties depend on time
only through a single, time-dependent length scale L(t).
Because the scaling regime is believed to arise from a zero
temperature fixed point [6], the effects of temperature on
the coarsening dynamics have been largely overlooked.
One important effect of temperature is the excitation of
spin waves in the regions between defects. These are the
precursors to the well-known Nambu-Goldstone modes
in a completely ordered system (7, 8]. The spin waves
renormalize the interaction between defects, and they are
interesting in their own right.

In this paper we consider the coarsening of a noncon-
served, N-component order parameter J in d dimen-
sions, as modeled by the nonlinear o (NLS) model. We
propose a separation of the order parameter into “fast”
modes ¥ due to thermal fluctuations and “slow” modes &
representing the underlying defect dynamics. This sep-
aration is only approximate, but it has a strong phe-
nomenological motivation. It is worth developing because
it allows us to calculate the order parameter correlation
function at nonzero temperature. Our results illuminate
the role of thermal fluctuations in coarsening systems and
reproduce known exact results.

We calculate the correlation function of the ordering
modes (0;|0;) = Cos(r,t)d;; using the standard Gaus-
sian closure approximation [2-5]. [We will consistently
use the shorthand (A|B) for (A(x',t)B(r’ + r,t)).] This
calculation is nearly identical to those made previously by
Liu and Mazenko [4] and Bray [5] for the time-dependent
Ginzburg-Landau (TDGL) model. As expected, we find
a scaling solution C,,(r,t) = G(r/L) with L ~ t'/2. The
function G depends upon N and d and is quantitatively
similar to that calculated for the TDGL model.

We go on to make a Gaussian assumption for the ther-
mal fluctuations ¥ and to calculate the correlation func-
tion (v;|v;) = Cyo(r,t)d;;. This is the primary result of
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our paper. The calculation presented is analagous to the
usual Gaussian approximation for fluctuations around
the ferromagnetically ordered state [8]. For N > 2 we
find that C,, has the scaling form C,, = TL?2 ¢F(r/L)
first predicted by Bray [6]. The function F' depends upon
N and d, and is ezact in the N — oo and t = oo lim-
its. For N = 2, we find that C,, = TI?"¢F(r/l) where
| = L/[In(L/a)]*/2.

Coarsening at the lower critical dimension d = d, = 2
requires special consideration. Coarsening is frequently
described as a process that takes place at a first-order
symmetry breaking phase transition, but the NLS model
in d. = 2 is known to have no broken symmetry phase
at T > 0 [9]. Nevertheless, Yurke et al. [10] performed
simulations of the XY model (N=2) in two dimensions
and observed qualitatively normal coarsening at a range
of temperatures below the Kosterlitz-Thouless transition
temperature. We will resolve this apparent paradox in
Sec. VI.

This paper is organized as follows. In Sec. II, we re-
view the NLS model as applied to defect coarsening. In
Sec. III, we develop the separation between & and .
In Sec. IV, we briefly review the methods developed for
coarsening at zero temperature and apply them to &. In
Sec. V, we develop the Gaussian approximation for ¥ and
calculate C,,. In Sec. VI, we discuss the peculiarities of
coarsening at d. = 2.

II. NLS MODEL

The NLS model has an N-component order parameter
¥(r,t) with fixed length ¢2 = ¢2. (We choose 1o = 1
without loss of generality.) The NLS equation of motion
at temperature T is

0vY;
ot

where I is a kinetic coefficient, and 7j is a Gaussian white
noise with

(mi(r,t)m; (x' ') = 2TT8,;8(x —t')o(t — t') .

=I(VZ; — (z/?- v%/?) »i) 4+ — (zﬁ-ﬁ) i, (2.1)

(2.2)
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It is important to remember that 1/_; is implicitly a coarse-
grained quantity with a lower length scale a (in practice,
the lattice spacing).

Our initial condition has mean zero and no correlations
on scales greater than a, representing an instantaneous
quench from a high temperature, disordered phase. One
realization of this is (¥;]¥;)i—0 = #0i; exp(—r/a). Sim-
ulations of the NLS model at T < T, starting from a
disordered initial condition in d > N show the rapid for-
mation of a dense collection of defects with dimension
d — N [11]. Due to the local conservation of topological
charge, point defects are stable and defects of higher di-
mension are metastable [12]. The subsequent evolution
of the order parameter is thus dominated by the motion
and annihilation of defects.

It has now been well established by experiments and
simulations [5,11,13, 14] that systems of this type exhibit
scaling. There is a regime where all statistical properties
depend on time only through a single, time-dependent
length scale L. The two quantities of greatest interest are
the growth law L(t) and the order parameter correlation
function (¥;|1;) = Cyydi;. It is now known that L ~ t1/2
for a nonconserved order parameter in d > 2 and d > N
and that the correlation function satisfies the scaling re-
lation Cyy(r,t) = ¥2G(r/L). There is extensive support
for this result from numerical studies [11], from heuristic
arguments [15], and from the approximate theories to be
discussed below. It is believed that G(z) depends upon N
and d, but is otherwise universal. It should be mentioned
that there are few systematic studies of the effects of tem-
perature on the coarsening of a vector order parameter.
Nevertheless, by analogy with other coarsening systems
it is believed that scaling results from a zero tempera-
ture fixed point, and that temperature is an irrelevant
variable at that fixed point [6]. This implies that G(z) is
independent of temperature, up to appropriate redefini-
tions of 92 and L(t). In the theory developed below, we
find that Cyy(r,t) = [1 + O(T)]G(r/L) + O(TL?*~9) for
d > 2 and d > N, in agreement with this expectation.

There are two exactly solvable limits for the NLS model
at nonzero temperature 0 < T < T,. At t = oo, the sys-
tem is ferromagnetically ordered and the noise excites
Nambu-Goldstone modes # with two-point correlation
function Cyy(k) = T/k? [8]. At N = oo, Mazenko and
Zannetti [16] calculated the order parameter correlation
function in the scaling regime

Ld (1 - cd:fv)v(zﬂ.)d/_ze_Kz/2
—-K2%/2

2l1—e
K? ’
where ¢4 is a constant that depends on d, K = kL is the

scaled wave number, and L = 2(I't)'/2. Note that this
reproduces the correct ¢ — co limit.

+TL (2.3)

III. SEPARATION OF THE
DEGREES OF FREEDOM

We will use Eq. (2.3) to motivate the calculation of
this section. The correlation function Cyy is written as
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the sum of two terms. The first term is the standard
T = 0 result, up to a temperature-dependent constant.
It is due to the presence of large, ordered regions of size
~ L, and it reproduces the Bragg peak as t & o0o. The
second term is O(T) and is due to transverse thermal
fluctuations about the partly ordered state. We are thus
tempted to write 1/_)‘ = & + ¥, where & orders like 1/_; at
T = 0 (and includes the defects) and ¥ represents the
transverse fluctuations. Assuming C,, = 0, we then have
Cyyp = Coo + Cyy. We expect v2 ~ n? ~ T by analogy
with the ordered case.

To motivate this separation another way, consider the
NLS model at T = 0. We define the time scale 7, as an
estimate of the time it takes 1 to change by order unity.
In the scaling regime, changes in 1/-; are predominantly
due to the motion of nearby defects. Using an argument
due to Bray and Rutenberg [15], we can approximate
8Y(r)/8t ~ v - V(r —r'), where v is the velocity of
the nearest defect, located at r’, and (,Z;(R) is the field
of an isolated defect (unique up to global rotations and
reflections). In the scaling regime v ~ L/t ~ 1/L and
Vé~1 /R , where R is the distance to the nearest defect.
We thus have that 7, ~ LR. The important thing to
notice is that 74 |min ~ La diverges with L. In this sense,
coarsening is related to the presence of asymptotically
slow modes in the system.

The belief that coarsening is governed by a zero tem-
perature fixed point implies that the slow modes are still
present in the system at finite temperature. We label the
slow modes . The noise gives rise to transverse fluctu-
ations in 1/-;, which we will treat as a small perturbation
around &. We label the fluctuations v. It should be clear
that the typical length and time scales in ¥ are micro-
scopic, so that the separation between & and ¥ is roughly
equivalent to a separation of time scales in the order pa-
rameter. This separation cannot be exact due to the fact
that v does contain some slow modes, but we will see
that it is an excellent first approximation.

We write 1/-; = G + ¥ + O(v?), where the transverse
fluctuations ¥ satsfy v <« o and ¥-& = 0. To first order in
v, 02 = 92 = 1. The issue of corrections to second order
in v will be addressed in Sec. VI. To derive the equations
of motion for & and ¥, we substitute ¥; = o; + v; into
the NLS equation of motion and expand to first order
in ¥ and 7. Since most 7, < 7,, we can separate the
equations by order to get

6(,;; = F(Vzai + (Va)za,-), (3.1)
Ov;
a’l; = F(Vzvi + 2(Vkaijv,-)o,- + (Va)z'ui) +n;

—(o-n)o; (3.2)
where repeated indices are to be summed over and where
we have used 02 = 1 and & ¥ = 0. Equation (3.1) is just
the NLS equation of motion at zero temperature.
Equation (3.2) is not a self-consistent equation of mo-
tion for . The term (Vo)2v; destabilizes fluctuations
with wavelength )\, 2 R, and can cause v? to increase
to order unity. A detailed calculation of C,, proceeding
from Eq. (3.2) yields nonphysical results. We therefore
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drop the (Vo)2v; term ad hoc to get IV. Coo

Ov; o .

81; =T(V2v; + 2(Vio;Vivj)o;) + ni — (6 - 7)o All the results presented in this section for the NLS

(3.3)

This is the evolution equation we use for v.
Equations (3.1) and (3.3) retain the essential physics
of the problem:

(i) The slow modes & order like 7,5 at T = 0.

(ii) Equation (3.3) preserves the constraint &-¢ = 0. It
can be rewritten as {v; = I'V2v; +7,} 1, where {a;},, =

— (& - d@)o; is a projection operator.

(iii) We can check that all ¥ modes are stable. We have

2
?}.L = F(V2v2

i —2(Vv)?) + 77

(3.4)

In the absence of noise, we see that v? is bounded and
tends to zero. We thus expect that v ~ n ~ O({/T) is
well behaved for all times.

(iv) If & is ferromagnetically ordered, then ¢; = 0 and
Eq. (3.3) reduces to the usual equation of motion for
small transverse fluctuations around the ordered state.

Furthermore, the equations are invariant under ¢ — —¢&
and also under ¥ — —¥. The immediate consequence of
this is that C,, = 0, and similarly for all odd correlation
functions.

It is instructive to consider a single spin wave with
wavevector k, phase ¢, and polarization é: T =
vkécos(k - r + ¢). The condition ¢ - & = 0 becomes the
boundary condition ¥|s, = 0, where S; is the d — N + 1
dimensional surface on which é-& = +1. The boundary
surfaces S will only intersect at defects. Indeed, since 1;
attains all possible orientations in the neighborhood of a
defect, each defect is threaded by all surfaces S. The typ-
ical curvature and the typical separation of the surfaces
can thus be characterized by L(t).

In N = 2, the S have dimension d — 1. Each S; there-
fore partitions the space into separate regions of size ~ L
and we expect that all spin waves with wave number
k < 1/L will be suppressed. In N > 2 the S do not
partition the space, but we still expect their presence to
inhibit long-wavelength modes. (Remember that the sur-
faces will move around as & evolves.) It is this condition
which introduces the length L into C,, and which cuts off
the long wavelength divergence of the Nambu-Goldstone
modes [consider the N = oo limit, Eq. (2.3)]. Note that
the boundary conditions on ¥ are qualitatively different
for N = 2. This is the first indication that the case N = 2
is special.

One technical point is that most of the previous the-
oretical work has been done on the time-dependent
Ginzburg-Landau model. In the TDGL model the mag-
nitude of the order parameter is not constrained, so one
needs to include the effects of longitudinal fluctuations in
4. We are working with the NLS model to avoid this com-
plication. Preliminary calculations on the TDGL model
indicate that the fluctuating degrees of freedom can still
be separated and that the equation of motion for trans-
verse fluctuations is unchanged to leading order.

model are analagous to those derived in Liu and Mazenko
[4] for the TDGL model. The reader is referred there for
a detailed treatment.

There already exists an approximate theory for coars-
ening at 7' = 0 [3-5], which we can apply directly to the
calculation of C,,. The theory is sometimes referred to
as a Gaussian closure scheme, since it relies upon a map-
ping from the & field, which is clearly not Gaussian due
to the constraint 02 = 1, to a new field 17, which can be
successfully approximated as a Gaussian field. The map-
ping is chosen so that the zeros of & coincide with the
zeros of 1 and so that o2 approaches its ordered value
as m gets large. The obvious choice for the NLS model
is & = m = n/m, with the implicit cutoff ¢ = 0 when
m < a. This relation lets us write & correlation func-
tions as 7 correlation functions and thereby, since 7 is
Gaussian, in terms of the two-point correlation function
(milm;) = Crum (7, t)d;;. We can calculate the & correla-
tion function (1h;|m;) = Cyqy(r,t)d;;. The result is

foa(1 N+1 11N + 2
_ S gl E 4.1
Cow = 3B (5.~ | F (5553 12) s (&)
where f = Crym(7r,t)/Cram (0, t), F is the hypergeometric
function, and B(z,y) = I'(z)['(y)/T(z + y) is the beta
function.

As described in detail by Liu and Mazenko [4] and Bray
[5], the order parameter evolution equation (3.1) can be
used to uniquely determine C,,,, [and therefore C,, via
Eq. (4.1)]. We enforce

Ui> =0

(note that 7 is not to be summed over here or below).
After calculating the 71 averages we find a differential
equation to be satisfied by f(r,t)

of f 28 Coo/0f?
at =Vii+ t3 dC,q/0f

where So(t) = Cmm(O,t). The derivatives of C,, with
respect to f can be calculated from Eq. (4.1). Equation
(4.3) supports a scaling solution with f(r,t) = f(r/L),
So ~ L2, and L ~ t/2. Since f scales, so does C,,, and
we can write Cyp(7,t) = G(r/L).

Rewriting Eq. (4.3) in terms of the scaled variable
z = r/L yields an ordinary differential equation for f(z)

2 02G/df?
3 0G/of

where we have chosen L = 2(T't)!/2, and where a prime
indicates a derivative with respect to z. The calculation
of f requires the solution of a nonlinear eigenvalue prob-
lem. The quantity u = mSo/2L? is the eigenvalue to be
determined [17].

Equation (4.4) has the general large z solution f =
Ag—d+m/2me—=?/2 4 Bz~ ™/2 where A and B are unde-
termined constants. The physical solution is expected to

(Vo)?o;) (4.2)

oo;
L T(Vig;
<8t (Vi +

(V)2 (4.3)

—zf' = Vf t5 f +3 (f1)2. (4.4)
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FIG. 1. The functions fnis(z), frocer(z), and 10zF(z)

for N = d = 3 corresponding to the eigenvalues unLs =
0.5440, prpcL = 0.5558, and v = —0.1173, respectively.

decay exponentially, and to therefore have B = 0. It is
straightforward to determine that the small  behavior
of fis f = 1— az? with a = w/(4ud). The eigenvalue p
is thus uniquely determined by requiring that the short
distance behavior match onto the long distance solution
with B = 0. Since Eq. (4.4) is nonlinear, the problem
must be solved numerically.

It should be noted that the differential equation to be
satisfied by f(z) is different for the NLS and TDGL mod-
els, but that the resulting changes in f and p are small.
The equation for frpgr analogous to (4.4) differs only
by the replacement of the factor 2/3 by 1. This replace-
ment leaves the leading short and long distance behaviors
of f unchanged. To check that the resulting differences
are quantitatively small, we calculated x and f for both
models for N = d = 3. We find pnws(3,3) = 0.5440 and
urpeL(3,3) = 0.5558, a 2% difference. Figure 1 shows
the corresponding fnis and frpgr. They are nearly in-
distinguishable, having a maximum absolute difference
of about 0.01 and a maximum relative difference in the
exponentially decaying tail of about 5%. Since the al-
tered term only enters the small distance expansion at
order =V, we expect the relative difference to decrease
with increasing N. Indeed, it is easy to check that fnrLs
and frpgL both reproduce the correct limit as N — oo.

V. C,»

A. The Gaussian approximation for v

Now we turn our attention to the calculation of C,,,.
In the spirit of the preceding section, we will introduce
a second Gaussian approximation. We relate the field
¥ to a new field g, which is postulated to be Gaussian.
Starting from the equation of motion (3.3), we derive a
differential equation to be satisfied by C,,. We find that
Cyv has a scaling form, whose calculation requires the
numerical solution of an eigenvalue problem.

The field ¥ is poorly approximated by a Gaussian field,
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since a Gaussian field will not satisfy the orthogonal-
ity constraint & -4 = 0. We here adopt the next sim-
plest approach, which is to assume that ¥ can be written
v; = g; — (6 - §)oi, where g is a Gaussian field. This def-
inition identically satisfies the orthogonality condition,
and it reduces to the familiar Gaussian approximation
for transverse fluctuations when & is ferromagnetically
ordered [8]. We thus have two N-component Gaussian
fields, 17 and §, and two functional relations & [m] and
v[m,g]. We know C,,,m, as discussed in the previous
section. We need to calculate {(g;|m;) = Cgmn(r,t)d;; and
(gi|g;) = Cgqq(r,t)d;; where the brackets now indicate av-
erages over 7t and §.

As discussed in Sec. 111, C,, = 0, due to the symmetry
of the equations of motion. We can easily show that this
requires Cygp, (7, t) = ao f(r,t), with ag undetermined and
f = Cmm/So defined previously. This choice ensures that
all correlation functions odd in v are zero.

To derive the differential equation to be satisfied by
Cyy, we recall Eq. (3.3) and demand

(—0; + T(V20; 4 2(Vio; Vivj)0s)

+n; — (6 - 7)0i|Vi)m,gn = 0. (5.1)

The terms involving the noise are readily shown to be

{ni — (0 - n)oi|vi) = (1 — 1/N)TTé(r). Equation (5.1)
then simplifies to

18C,,

591 = (V2Cuu + A(Vi0; Vivy) oifvs)

+ (1 - %) TTS(r) .

We can already see the nature of the scaling solution
for C,, by counting powers in Eq. (5.2). Comparing left
and right hand sides, we have t ~ L2. Comparing the
noise term with the others, we have L=2C,, ~ T4(r) ~
TL~?. We thus expect Cyy(r,t) = TL2~9F(r/L), with
Fourier transform C,,(k,t) = TL*F(kL). We will see
that this argument is correct for N > 2. For the XY
model, N = 2, this argument fails because the term
((Vro;Viv;) 0;i|vi) ~ L~21n(L/a). We therefore restrict
our attention to NV > 2 in this section.

The expression for ((Vx0;Vv;) 0;|v;) in terms of Cprrr,
and Cgyg is not very transparent:

(5.2)

1 ~ 1 -
((VkO'ij‘Uj) 0’,'|‘U,'> = ]V—SOBIng + NBsz . Vng

1 -
+FB3(Vf)2cgg, (5.3)
_N-1(,, N-1 N»?
Bi=—%x (f N—2_Tz)’ (54)
- Ny?
BZ- _f + —Zf—CZ, (5'5)
4 3
YN 1
33=2f2+ z[ﬁC4+N2 (2—f2- —2) Cs + 2NC,
2
o 2)72], (5.6)
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11-2f2 This has the eneral solution

C2 = (ojok|ojon) — f2 — = ,yzf ) (5.7) F = Ag—[2+7/u(N-2)]—2?/2 | Biz—d+7r/u(N~2). where

1 2f2 A and B are undetermined constants. We expect that

C3=Czy — N2 7—( —4f? )5 (5.8) the physical solution decays exponentially and therefore
14 has B = 0. We will see that there is a constant in the

Ca=Cs+ 55 (3~ 142 + 12f4), (5.9) small = expansion which can be uniquely determined by

N3 2 the requirement that an integration from small to large

where Cyg = Cyg — a2f/So and v2 = 1/(1 — f2). Note
that B; and B; diverge as N — 2, signaling the presence
of logarithms in the correct N = 2 calculation.

To write Eq. (5.2) as an equation in C,, and f only,
we use the relation C‘gg = Cy» /D, where the denominator
D=1-% —1‘<Uj0'k|0'j0'k>. Since ag only appears in
the combmatlon ng, it drops out of our final equation
for Cy,. Finally, we calculate

N N
(ojok|ojor) = msz (1, 1; -t 2;f2>

+1~f2F<1,1;E+1;f2)4 (5.10)

N 2

Expanding Eq. (5.10) in powers of 1/N gives

2 2
(ojok|ojoK) = + ~ ;f ;2 2f2 (3 —4f?)
_7v1_34_f2(3 —14f% + 12f%)
+O(1/N*). (5.11)

Comparison with the C, defined above shows that C, ~
O(1/NP) at large N. The B, are therefore O(N°).

B. Similarity solution for C,,

As indicated above, Eq. (5.2) supports the scaling so-
lution Cy,, = TL279F(r/L) for N > 2. In this section we
derive the ordinary differential equation to be satisfied by
F. First, we transform from r to the scaling variable z =
r/L and note that §(r) = §(x)/L? = §(z)/LQqz? !,
where Q4 = 274/2/T'(d/2) is the surface area of a unit
sphere in d dimensions. Then we substitute the scaling
solution and cancel common factors. Lastly, we recall
from Sec. IV that u = 7Sp/2L? and L = 2(I't)}/? to get

the scaling equation
epy gl 2t (F
V*F + N;L31D+NBZf . (’D

—(d—2)F — zF' =

2 F
—N;Bs(f )25 +

N -1 4(z)
N le‘d”1
(5.12)

where a prime indicates a derivative with respect to .
Consider the scaling equation at large . Recalling that

f decays exponentially at large z, we expand in powers

of f2 to get

V3iF —

—(d—2)F —F' = F + O(Ff?).

(N 2)
(5.13)

z matches onto the physical long distance solution.

We now seek the small z expansion of F. At lead-
ing order the only terms in Eq. (5.12) to consider are
0 = V2F + (1 - #)8(x)/(4z%""). Recalling that the

spherically symmetric Laplacian V? = L+ 2 (zd! 2)
we find F = ——ln(:c) ind=2and F = Mdanl)-n—d;}ﬁ

in d > 2. Since we are considering only N > 2 and
d > N, we will further restrict our attention to d > 2 in
this section.

The calculation of F' to next order in = depends
upon f. Recall that f = 1 — az? at small =, where
a = 7/(4ud). We expand Eq. (5.10) for {ojok|ojo%)
and find (ojok|ojor) = 1 — %:—;201:82 with the next or-
der z™in(N:4) " Returning to Eq. (5.12), we can calculate
F to second order:

(1-7%7)%( +”+(N 2)) d=3
Pl 0-%) (3 + g +v), d=
(1~ ) e (1 - wlae?)
d> 4.
(5.14)

The small distance expansion always has an undeter-
mined constant v entering at O(z®). This is the first term
in the solution of the homogeneous part of Eq. (5.12),
which enters with an arbitrary magnitude. As mentioned
above, v can be fixed by the requirement that F' decays
exponentially at large z. We thus have an eigenvalue
problem to be solved by numerical integration for each
N and d. We have performed this calculation for the
case N = d = 3. Figure 1 shows the function zF(z).
The corresponding eigenvalue is v(3,3) = —0.1173.

C. The limits ¢t &> oo and N — oo

The short distance singularities in (5.14) are exactly
those one expects for Nambu-Goldstone modes in an or-
dered system. As t — oo, L diverges and only the lead-
ing order term persists. We thus have C,,(r,t = o0) =
Tﬁﬁ in d > 2. This is the exact t = oo result
[7]. We reserve the case d = 2 for Sec. VI.

As N — oo we recover the result of Mazenko and Zan-

netti [16]. Equation (5.12) becomes
v2 il 2
F Nup ( )

2 g 1 é(z)
A (1 N) Qw1
+O(1/N?). (5.15)
At leading order, the Fourier transform of this equation

is 2F + IZ(F’ = —K2F + 1. This has the solution F =
(1-e K /2)/K2

—(d —2)F — zF'
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D. The XY model, N = 2

As mentioned above, the term ((Vio;Vyvj)o;lvi) ~
L~21n(L/a) for the case N = 2. The logarithms originate
in the expression (m~2), which is 1/(N —2)S, for N > 2,
but In(L/a)/So + O(1) for N = 2. The only terms that
differ from those in Sec. VA are B = —In(L/a)/2 +
O(1,lnz) and Bs = v%[In(L/a)/2+0(1,1nz)]. Forr > a,
Eq. (5.2) becomes

19C,, _ 2 CyyIn(L/a) ( w 72 2
2 8t lH(V'C"“L 2D L2 24 3 (V2f)

+35(0)) +0(L77C), (5.16)
where f and < are functions of the scaling variable z =
r/L, as before.

We can still find a scaling solution for C,,, with the
surprising feature that the characteristic length is loga-
rithmically smaller than L. We find C,, = TI1?~9F(r/l)
where I = L/[In(L/a)]*/2. In terms of the new scaled
variable y = r/l the scaling equation simplifies to

3(y)

W + O(F/In(L/a))

= 2 —_ 1_
O—VyF (2”+a>F+
(5.17)

where we have replaced the functions of = in Eq. (5.16)
by their values at £ = 0. This equation can be solved
exactly in Fourier space to give F(K) = (K% + m?)~!,
where m? = 7/2u + o and the scaling variable is K = kl.
The expected corrections are of relative order 1/1n(L/a).

VI. Cyy TO ORDER T AND THE CASE D =2

We have avoided until now the issue of higher order
corrections to our approximate separation i = &+ #. To
satisfy 92 = 1 to first nontrivial order in T, the only
consistent substitution is ¢ = (1 —v?/2)& + ¥. With this
we can calculate the order parameter correlation function
to first order in the temperature Cyy = (1 — (v2))Coo +
Cyo + O(T?).

Consider the case d > 2. The amplitude of thermal
fluctuations (v2) = NCyy(a) = Tﬁp}-—O(TI/""’)
is asymptotic to a constant. Inserting the scaling forms,
we have Cyy = (1—(v?))G(r/L)+TL* 4F(r/L)+O(T?)
(for the case N = 2, replace L by [ in the last term). Note
that the relative amplitude of the spin wave correlation
function diminishes as L2=¢. This is in agreement with
the expectation that T is an irrelevant variable in d >
2. As a consequence, it will be extremely difficult to
determine F' by either experiment or simulation.

Now consider the case d = d. = 2, at the lower crit-
ical dimension of the NLS model. Since we have been
considering only N < d, we restrict our attention to the
XY model. The quantity (v?) = TIn(l/a)/27 + O(T) di-
verges logarithmically with [. As the system coarsens, we
thus expect that the thermal fluctuations will increase in
amplitude until v is comparable to o, at which point our
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approximation v < o will fail. This is a reminder that
thermal fluctuations destroy the long-range order in two
dimensions, with the surprising implication that ! plays
the role of an effective system size.

It is instructive to define the length L* at which
(v?) = 1. We find L* = a(2n/T)'/? exp(—27/T). This
is in remarkable qualitative agreement with the average
equilibrium separation between defect-antidefect pairs at
low temperatures as estimated by Kosterlitz and Thou-
less Lxt = a(1/7T)'/? exp(—n2/2T) [18]. This is en-
couraging, especially since the T—'/2 factor arises in our
theory due to the logarithmic difference between L and
l.

We thus make the prediction that the XY model in
two dimensions will exhibit qualitatively normal coars-
ening for L « Lg1(T). As L increases, the amplitude of
thermal fluctuations will increase as (v2) =~ T'In(l/a)/27.
It is only when L ~ Lkt (T) and (v?) =~ 1 that thermal
fluctuations are large enough to create defect-antidefect
pairs in significant numbers and we expect a crossover
to equilibrium behavior. Until then, pair creation is sup-
pressed.

This prediction is supported in part by simulations
of the XY model in two dimensions reported by Yurke
et al. [10]. They observed qualitatively normal defect
coarsening at a range of temperatures below Txt. The
primary difference between their results and the theory
presented here was an apparent logarithmic correction
to the growth law L ~ [t/In(t)]/2. This is due to a
renormalization of I' which our theory cannot account
for. They limited their observations to temperatures for
which Lkt was greater than their system size, so they do
not illuminate the crossover regime L ~ Lkt. It would
be very instructive to examine this regime further.

VII. CONCLUSION

In this paper we have presented a calculation of the
order parameter correlation function for the defect coars-
ening problem as described by the NLS model. We fo-
cused on the case N < d and low temperatures. We
used the approximate separation of the time scales as-
sociated with thermal fluctuations and defect coarsening
to motivate the decomposition of the order parameter
1/3‘ = & + 7, slow and fast modes respectively. Although
the equations of motion for ¢ and v are introduced in
a somewhat ad hoc manner, they successfully reproduce
much of the phenomenology of defect coarsening.

We used the Gaussian closure approximation to de-
rive an ordinary differential equation for the scaling so-
lution C,,(r,t) = G(r/L). A second Gaussian assump-
tion was introduced in order to calculate the fast-mode
correlation function C,,. We found that C,, has a scal-
ing solution Cyy(r,t) = TI27¢F(r/l) for N = 2 and
Cyo(r,t) = TL?2~9F(r/L) for N > 2ind > N. The main
result of this paper is an ordinary differential equation
whose solution is the scaling function F(z). We calcu-
lated this solution analytically for N = 2 and numerically
for N =d =3.

In d > 2 dimensions, we found that the assymptotic
order parameter correlation function is independent of
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temperature up to a multiplicative constant, in agree-
ment with the belief that temperature is an irrelevant
variable for these systems. Lastly, we considered the case
of the XY model in d = d. = 2. Our theory makes sev-
eral qualitative predictions for this system. Most notable
is the prediction that defect-antidefect pair creation will
be suppressed until L ~ Lgt(T), where Lxt(T) is the
average separation between pairs in equilibrium.

There are several avenues of research suggested by the
results in this paper. (1) Can this phenomenological cal-
culation be systematically improved? (2) Is the small dif-
ference between fnrs and frpgL indicative of a genuine
violation of universality or is it a relic of the Gaussian
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approximation? (3) Can these results be extended to the
case N > d, where topological textures can play an im-
portant role? (4) To what extent can F'(x) be determined
empirically? And lastly, this paper clearly indicates the
need for a systematic study of the crossover from coars-
ening to equilibrium behavior in the two dimensional XY
model at T < Tkr.
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